Formulae Sheet - Statistics I

$2^{\text {nd }}$ Semester of 2019/2020

- Probability:

Let A, B and C be events of a sample space. Then:

$$
P(A \cap B \cap C)=P(A) P(B \mid A) P(C \mid A \cap B)
$$

Let $\left\{A_{1}, A_{2}, \cdots\right\}$ be a partition of a sample space S and B an event of S. Then, if $P\left(A_{j}\right)>0$, for all $j=1,2, \cdots$ and $P(B)>0$,

$$
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} \cap B\right)}{P(B)}=\frac{P\left(B \mid A_{j}\right) P\left(A_{j}\right)}{\sum_{i=1} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

- Expected values and other quantities (for a single RV):

Let X be a random variable. Then,

$$
\begin{aligned}
E(g(X)) & =\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x, \text { if } X \text { is a continuous RV } \\
E(g(X)) & =\sum_{x \in D_{X}} g(x) f_{X}(x), \text { if } X \text { is a discrete RV } \\
\operatorname{Var}(X) & =E\left(\left(X-\mu_{X}\right)^{2}\right)=E\left(X^{2}\right)-(E(X))^{2} \\
\operatorname{mo}(X) & =\arg \max _{x \in \mathbb{R}} f_{X}(x), \quad q_{\alpha}(X)=\min \left\{x \in \mathbb{R}: F_{X}(x) \geq \alpha\right\}, \quad M_{X}(t)=E\left(e^{X t}\right) .
\end{aligned}
$$

- Expected values and other quantities (for functions of RV):

Let X and Y be two random variable. Then,

$$
\begin{aligned}
E(g(X, Y)) & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X, Y}(x, y) d x d y, \text { if } X \text { and } Y \text { are continuous RV } \\
E(g(X, Y)) & =\sum_{(x, y) \in D_{X, Y}} g(x, y) f_{X, Y}(x, y), \text { if } X \text { and } Y \text { are discrete RV } \\
\operatorname{Cov}(X, Y) & =E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-E(X) E(Y) \\
E(g(X, Y) \mid Y=y) & =\int_{-\infty}^{+\infty} g(x, y) f_{X \mid Y=y}(x) d x, \text { if } X \text { and } Y \text { are continuous RV } \\
E(g(X, Y) \mid Y=y) & =\sum_{x \in D_{X}} g(x, y) f_{X \mid Y=y}(x), \text { if } X \text { and } Y \text { are discrete RV } \\
\operatorname{Var}(X \mid Y=y) & =E\left(\left(X-\mu_{X \mid Y=y}\right)^{2} \mid Y=y\right)=E\left(X^{2} \mid Y=y\right)-(E(X \mid Y=y))^{2} .
\end{aligned}
$$

- The tower property (or Law of total expectation):

Let X and Y be two random variable. Then,

$$
E(E(X \mid Y))=E(X) \quad \text { and } \quad E(E(Y \mid X))=E(Y)
$$

- Theoretical distributions:
- Discrete uniform distribution:

$$
\begin{aligned}
& f_{X}\left(x_{j}\right)=\frac{1}{k}, j=1,2,3, \ldots, k \\
& \text { if } x_{j}=j, \text { then } \mu_{X}=E(X)=\frac{k+1}{2}, \quad \operatorname{Var}(X)=\frac{k^{2}-1}{12}
\end{aligned}
$$

- Binomial (and Bernoulli) distribution $(X \sim \operatorname{Bin}(n, p))$:

$$
\begin{aligned}
& f_{X}(x)=\binom{n}{x} \times p^{x}(1-p)^{n-x}, x=0,1,2, \cdots, n \\
& E(X)=n p, \quad \operatorname{Var}(X)=n p(1-p) \quad M_{X}(t)=\left[(1-p)+p e^{t}\right]^{n}
\end{aligned}
$$

- Hypergeometric distribution $(X \sim \operatorname{Hypergeometric}(N, M, n)$):

$$
\begin{aligned}
& P(X=k)=\frac{\binom{N-M}{n-k}\binom{M}{k}}{\binom{N}{n}}, \quad k=\max \{0, n-(N-M)\}, \cdots, \min n, M \\
& E(X)=n \times \frac{M}{N}, \quad \operatorname{Var}(X)=n \frac{M}{N}\left(1-\frac{M}{N}\right) \frac{N-n}{N-1}
\end{aligned}
$$

- Negative Binomial (and Geometric) distribution $(X \sim N B(k, p))$:

$$
\begin{aligned}
& P(X=x)=\binom{x-1}{k-1} p^{k}(1-p)^{x-k}, \quad x=k, k+1, k+2, \cdots \\
& E(X)=\frac{k}{p}, \quad \operatorname{Var}(X)=\frac{k}{p}\left(\frac{1}{p}-1\right), \quad M_{X}(t)=\left(\frac{p e^{t}}{1-e^{t}(1-p)}\right)^{k}
\end{aligned}
$$

- Poisson distribution $(X \sim \operatorname{Poi}(\lambda))$:

$$
P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, x=0,1,2, \cdots, \quad E(X)=\operatorname{Var}(X)=\lambda, \quad M_{X}(X)=e^{\lambda\left(e^{t}-1\right)}
$$

- Exponential distribution $(X \sim \operatorname{Exp}(\lambda))$:

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x>0, \quad E(X)=1 / \lambda, \quad \operatorname{Var}(X)=1 / \lambda^{2}, \quad M_{X}(t)=(1-t / \lambda)^{-1}, t<\lambda
$$

- Gamma (and chi-squared) distribution ($X \sim \operatorname{Gamma}(a, b)$):

$$
\begin{aligned}
& E(X)=a b, \quad \operatorname{Var}(X)=a b^{2}, \quad M_{X}(t)=(1-b t)^{-a}, t<1 / b \\
& \text { If } a=1, b=\frac{1}{\lambda} \text { then } X \sim \operatorname{Exp}(\lambda) ; \quad \text { If } a=\frac{n}{2}, b=2 \text { then } X \sim \chi_{(n)}^{2} .
\end{aligned}
$$

- Continuous uniform distribution $(X \sim U(a, b))$:

$$
f_{X}(x)=\frac{1}{b-a}, \quad a<x<b, \quad E(X)=(a+b) / 2, \quad \operatorname{Var}(X)=(b-a)^{2} / 12
$$

- Normal distribution $\left(X \sim N\left(\mu, \sigma^{2}\right)\right)$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}, \quad E(X)=\mu, \quad \operatorname{Var}(X)=\sigma^{2}, \quad M_{X}(t)=e^{\left(\mu t+0.5 \sigma^{2} t^{2}\right)}
$$

- Central Limit Theorem

Let X_{i} be a sequence of independent and identically distributed random variables with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Then,

$$
Z=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \stackrel{a}{\sim} N(0,1)
$$

